Spin Bottlenecks in the Quantum Hall Regime
نویسندگان
چکیده
منابع مشابه
Spin-flip scattering in the quantum Hall regime.
We present a microscopic theory of spin-orbit coupling in the integer quantum Hall regime. The spin-orbit scattering length is evaluated in the limit of long-range random potential. The spin-flip rate is shown to be determined by rare fluctuations of anomalously high electric field. A mechanism of strong spin-orbit scattering associated with exchange-induced spontaneous spin-polarization is sug...
متن کاملImaging currents in HgTe quantum wells in the quantum spin Hall regime.
The quantum spin Hall (QSH) state is a state of matter characterized by a non-trivial topology of its band structure, and associated conducting edge channels. The QSH state was predicted and experimentally demonstrated to be realized in HgTe quantum wells. The existence of the edge channels has been inferred from local and non-local transport measurements in sufficiently small devices. Here we ...
متن کاملSupercurrent in the quantum Hall regime.
A promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall (QH) effect. Despite this potential, signatures of superconductivity in the QH regime remain scarce, and a superconducting current through a QH weak link has been challenging to observe. We demonstrate the existence of a distinct supercurrent mechanism in encapsulated graphene ...
متن کاملMesoscopic Effects in the Quantum Hall Regime
Abstract. We report results of a study of (integer) quantum Hall transitions in a single or multiple Landau levels for non-interacting electrons in disordered two-dimensional systems, obtained by projecting a tight-binding Hamiltonian to corresponding magnetic subbands. In finite-size systems, we find that mesoscopic effects often dominate, leading to apparent non-universal scaling behaviour in...
متن کاملThermopower in the quantum Hall regime.
We consider the effect of disorder on the themopower in quantum Hall systems. For a sample in the Corbino geometry, where dissipative currents are not carried by edge states, we find that thermopower behaves at high temperatures like a system with a gap and has a maximum which increases as the temperature is reduced. At lower temperatures this maximum reduces as a function of temperature as a r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 1999
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.83.3262